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Driven Diffusive Systems

We consider classical many-body systems with short-range interaction and
noisy dynamics in 1D. Assume the particles are subject an "external field", so
that there is an average current even in a homogenous state. We call such
systems Driven Diffusive Systems. We refer to the current expression in a
homogenous state as the hydrodynamic current J(ρ)

Molecular transport on an axon [Hirokawa 2010]

Fundamental objects for out-of-equilibrium statistical physics

Simplest example on the lattice: The Asymmetric simple exclusion process
(ASEP) for which the hydrodynamic current is J(ρ) = (p − q)ρ(1 − ρ)
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Max-Min Principle (Extremal Current Principle)

What happens if you couple a driven diffusive system to réservoirs?

For one species systems coupled to reservoirs, once the hydrodynamic current
expression j(ρ) is known, we have the:
Extremal current principle: [Krug, Popkov, Schütz, Hager...]

j =

{
maxρ∈[ρR ,ρL](J(ρ)) if ρL > ρR

minρ∈[ρL,ρR ](J(ρ)) if ρL < ρR
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How to generalize the Max-Min principle to multi-component systems?

Reformulation [Cantini, Zahra, 2023]

Bulk density and current are derived from the solution at zero of the Riemann
problem of the corresponding boundary densities.
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How to generalize the Max-Min principle to multi-component systems?

Reformulation [Cantini, Zahra, 2023]

Bulk density and current are derived from the solution at zero of the Riemann
problem of the corresponding boundary densities.

A principle for multi-components systems

Bulk densities and currents are derived from the solution at zero of the
Riemann problem of the corresponding boundary densities.
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How do you put it into practice?

Problem: In general, we don’t know what are the boundary densities, for
concrete applications. For lattice models with n species, we can fix the
boundary rates:

j
νL
i,j−−→ i i

νR
i,j−−→ j

We can write the left and right current as a function of the left and right
densities

JL
i (ρ

L) =
n∑

i=1

ρjν
L
ji − ρi

N∑
i=1

νL
ij

JR
i (ρ

R) =
n∑

i=1

ρjν
R
ji − ρi

N∑
i=1

νR
ij

In the steady state, we have

JL(ρL) = J(ρB) = JR(ρR)

(ρL,ρR)
RP0−−→ ρB

}
Iterative Scheme solution

Can we speak about a phase diagram?
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Toy model: The two-TASEP

•∗ β−→ ∗ • ∗◦ α−→ ◦ ∗ •◦ 1−→ ◦•

The hydrodynamic currents are found using the Nested Algebraic Bethe
Ansatz(N-ABA) [Cantini ’08]

J0 = zα(zβ − 1) + ρ◦(zα − zβ)

J• = zβ(1 − zα) + ρ•(zα − zβ)

Where the z variables are solution of a saddle-point equation:

ρ◦
zα

+
ρ•

zα − 1
+

1 − ρ◦ − ρ•
zα − α

= 0

ρ•
zβ

+
ρ◦

zβ − 1
+

1 − ρ◦ − ρ•
zβ − β

= 0

zα ∈ [0,min(1, α)] and zβ ∈ [0,min(1, β)]

zα

zβ

α

β

1

1
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Hyperbolic System of Coupled Conservation Laws

We assume the hydrodynamic hypothesis and we define coarse grained densities
ρ◦(x , t) and ρ•(x , t). We have a System of coupled conservation equations:

∂tρ◦ + ∂xJ◦ = 0

∂tρ• + ∂xJ• = 0

The z ′s variables happen to be the Riemann variables that "diagonalize" the
system: [Cantini Zahra ’22]

(
ρ◦
z2
α

+
ρ•

(zα − 1)2
+

1 − ρ◦ − ρ•
(zα − α)2

)
∂tzα+

(
J0

z2
α

+
J•

(zα − 1)2
− J0 + J•

(zα − α)2

)
∂xzα = 0(

ρ•
z2
β

+
ρ◦

(zβ − 1)2
+

1 − ρ◦ − ρ•
(zβ − β)2

)
∂tzβ+

(
J•
z2
β

+
J0

(zβ − 1)2
− J0 + J•

(zβ − β)2

)
∂xzβ = 0

They can be written in a compact form:

∂tzα + vα(zα, zβ)∂xzα = 0

∂tzβ + vβ(zα, zβ)∂xzβ = 0
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The rarefaction fans

Riemann problem: uniform initial profile with a discontinuity at the origin.

Special solutions (elementary solutions)
best characterised by in the z-plane:

Rarafaction fans: two types α and β
+TASEP-like fan

Shock solutions two types α, and β

Rarefaction curves coincide with shock curves:
Temple class model

1

1 zα

zβ

L R

L

R

R L
R

L
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General solutions for the Riemann problem

The arrows allows to navigate in the z space.
Solutions behave according to the relative positions of the points (zLα, z

L
β) and

(zRα , z
R
β )

1

1 zα

zβ

L

R

1

1 zα

zβ

L

R
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The General solutions

Combining the elementary solutions, we can "navigate" between any two point
of the z plane.

1

1 zα

zβ

L

R

R R

R

R
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Solutions for the density

Some simulations of the integral of the density(h):
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Application: Two-Species TASEP with open boundaries

Three exchange rates on each boundary:

νL = (νL
•◦, ν

L
•∗, ν

L
∗◦)

νR = (νR
•◦, ν

R
•∗, ν

R
∗◦)

Problem: Determining the densities on the boundaries and on the bulk from
the rates.
The average currents on the boundaries:

JL
• = νL

•◦ρ
L
◦ + νL

•∗(1 − ρL◦ − ρL•)

JL
◦ = −(νL

•◦ + νL
∗◦)ρ

L
◦

JR
◦ = −νR

•◦ρ
R
• − νR

∗◦(1 − ρR◦ − ρR• )

JR
• = (νR

•◦ + νR
•∗)ρ

R
•

In the steady state:

The Scheme

{
JL(ρL) = J(ρB) = JR(ρR)

(ρL,ρR)
RP0−−→ ρB
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Application: Two-species TASEP with open boundaries

We have 6 equations with 6 variables that we can solve iteratively.
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(b) Iterative evolution

Figure
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Boundary-induced phase diagram for Two-Species TASEP

The phase diagram is conveniently parameterized by the Riemann variables in
the bulk:

For single-species TASEP:

For two-species TASEP:
ρB1

2
10 LI RI

v(ρB) < 0v(ρB) > 0
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Phase diagram

Hyperbolicity of the conservation laws implies that some Forbidden Phases

vα < 0 vα = 0 vα > 0
vβ < 0 RR BR LR
vβ = 0 × BB LB
vβ > 0 × × LL

Numerical simulations varying νL
•∗ For the green shaded region vβ > 0, while

for the yellow shaded section vβ = 0. vα < 0 for both regions
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Vanishing viscosity approach

We add an infinitesimal diffusion component to the current:

J total = J(ρ)− ϵD(ρ)
∂ρ

∂x

We can derive an ODE for the Riemann variables
∂z
∂x

= ϵ−1M−1D−1(J(z)− J total) := F (z)

Where Mij =
∂ρi
∂ξj

. Obviously: F (zB) = 0 We linearize the ODE in the
neighborhood of the stationary point:

∂Fi

∂ξj
(ξB) = ϵ−1d−1

i viδij

So the phase diagram is again governed by the set {vi}:
A Sink vi < 0 for all i , this means that the bulk is driven from right
A Source vi > 0 for all i ,this means that the bulk is driven from left.
A Saddle Point vi ̸= 0 but have different signs. each zi will be driven
according to the sign of the corresponding vi
Second Order Singularity if some vi are zero. The bulk will belong to the
intersection of the manifolds vi = 0
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Vanishing viscosity approach

Illustration for 2-TASEP for α = 0.8, β = 0.9

Ali Zahra Steady-state selection in multi-species driven diffusive systems



Introduction
Steady state selection for multi-component systems

The two TASEP
Application to other models

The Two-ASEP
The Three-TASEP

Two-ASEP

νij =

{
1 if i > j

q if i < j

where we have chosen the following order on the species: • > ∗ > ◦.
J• = (1 − q)ρ•(1 − ρ•)

J◦ = (q − 1)ρ◦(1 − ρ◦).

Numerical simulations varying νL
•∗.

For the green shaded region v• > 0

For the yellow shaded section
v• < 0

For both regions v◦ < 0

Bulk and boundary densities of the 2-ASEP as a function of the νL
•∗. The

crosses represent the numerical simulations, while the lines are the theoretical
predictions. For the green shaded region v• > 0, while for the yellow shaded
section v• < 0 (in both regions v◦ < 0

Ali Zahra Steady-state selection in multi-species driven diffusive systems



Introduction
Steady state selection for multi-component systems

The two TASEP
Application to other models

The Two-ASEP
The Three-TASEP

Three-TASEP

The last model we have considered, a 3-species TASEP, contains particles with
labels (1, 2, 3, 4), where the type 4 can be seen as empty sites, and bulk
hopping rates:

ij
νij−→ ji νij =


0 if i > j

ν12 if (i , j) = (1, 2)
ν34 if (i , j) = (3, 4)
1 otherwise

J1 = J•(1 − ρ1 − ρ2, ρ1, 1, ν12)

J2 = J•(ρ4, ρ1 + ρ2, ν34, 1)− J1

J4 = J◦(ρ4, ρ1 + ρ2, ν34, 1).
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Perspective

Investigating how rigorous the method is

Relation to integrable boundaries

Testing on more models with number of species n > 2

Models which are not Temple class?

Models that do not have convex currents
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