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Introduction Driven) Diffusive|Systems

Max-Min principle for single species models with open boundaries
Example: TASEP with open boundaries

Driven Diffusive Systems

We consider classical many-body systems with short-range interaction and
noisy dynamics in 1D. Assume the particles are subject an "external field", so
that there is an average current even in a homogenous state. We call such
systems Driven Diffusive Systems. We refer to the current expression in a
homogenous state as the hydrodynamic current J(p)
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Molecular transport on an axon [Hirokawa 2010]

m Fundamental objects for out-of-equilibrium statistical physics

m Simplest example on the lattice: The Asymmetric simple exclusion process
(ASEP) for which the hydrodynamic current is J(p) = (p — q)p(1 — p)
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Driven Diffusive Systems

Max-Min principle for single species models with open boundaries
Example: TASEP with open boundaries

Max-Min Principle (Extremal Current Principle)

What happens if you couple a driven diffusive system to réservoirs?

For one species systems coupled to reservoirs, once the hydrodynamic current
expression j(p) is known, we have the:
Extremal current principle: [Krug, Popkov, Schiitz, Hager...]

max, ¢, oty (J(p)) if pt > pf
min, et 5 (J(p)) if pt < pf
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Max-Min Principle (Extremal Current Principle)

What happens if you couple a driven diffusive system to réservoirs?

For one species systems coupled to reservoirs, once the hydrodynamic current
expression j(p) is known, we have the:
Extremal current principle: [Krug, Popkov, Schiitz, Hager...]

max &t (J(p)) if pt > pf
min gt R (J(p)) i pt < pf

VOLUME 67, NuMBER 14 PHYSICAL REVIEW LETTERS 30 SpTEMBLR 1991

Boundary-Induced Phase Transitions in Driven Diffusive Systems
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Max-Min Principle (Extremal Current Principle)

What happens if you couple a driven diffusive system to réservoirs?

For one species systems coupled to reservoirs, once the hydrodynamic current
expression j(p) is known, we have the:
Extremal current principle: [Krug, Popkov, Schiitz, Hager...]

max,c v ot (J(p)) if pt > pf
mian[pL,pR](J(ﬂ)) if pt < pf

VOLUME 67, NUMBIR 14 PHYSICAL REVIEW LETTERS 30 SEPTEMBLR 1991

Boundary-Induced Phase Transitions in Driven Diffusive Systems
EUROPHYSICS LETTERS

Europhys. Lett., 48 (3), pp. 257-263 (1999)
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Example: TASEP with open boundaries

max,c i r ot (J(p)) i pt > pf
mian[pL,pR](J(ﬂ)) if pt < pf

0 J(p) = p(1 —p)
v =1-2
1 (p) P
J(P)/\
HD
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Example: TASEP with open boundaries

@« ' . i= max, ¢, 1 (J(p)) if pt > pf
~9_00 00 min, ot 5 (J(p)) if pt < pf
R
0 J(p) = p(1 —p)
A
v(p) =1-2p
1
HD J(P)a
RI
|
LD MC L
LI Bl | l
+ . \
" 0 1 )L R ot 1
2 p
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Example: TASEP with open boundaries

max,cpor o (J(p)) if pt > pf

Oy L 1 LS =
~9_00 00 min, ot 5 (J(p)) if pt < pf
R
0 J(p) = p(1 —p)
A
v(p) =1-2p
1
HD J(P) A
RI
|
LD MC !
I-ll BI v .
" 0 1 )L Rt 1 "o
2 p

Ali Zahra Steady-state selection in multi-species driven diffusive systems



Introduction

Driven Diffusive Systems
Max-Min principle for single species models with open boundaries
Example: TASEP with open boundaries

Example: TASEP with open boundaries

max,cpor o (J(p)) if pt > pf

Oy L 1 LS =
~9_00 00 min, ot 5 (J(p)) if pt < pf
R
0 J(p) = p(1 —p)
A
v(p) =1-2p
1
HD J(P)a
RI
|
LD MC ! !
LI BI ! | .
0
" 1 )L oR ot 1
2 p
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Example: TASEP with open boundaries

o (.l = }a B J = maXPE[pR’pL](J(p)) If pL > pR
IO minee i (J(p)) i o < "
R
p J(p) = p(1 - p)
AN
vip)=1-2p
1
HD J(P) A
RI
|
LD MC ! ‘
LI BI ! |
\
+ n 0 )L ot A1 o
2 Loy
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Example: TASEP with open boundaries

O¢ L 1 e = max,eor o1 (J(P)) if pt>pf
TCT} Q0_ \T,J;g\*) minpe[pL,pR](J(p)) if pL < pR
R
P J(p) = p(1 - p)
A
1 v(p)=1-2p
HD J(P)a
RI
|
LD MC | 1
LI BI | |
+ N \
1 L 1 )L ot oR 1
2 P
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Example: TASEP with open boundaries

o =a SF=1-4 . .
o« 11 o i= max, ¢, ot (J(p)) if p~>p
~9_00 00 min, ot 5 (J(p)) if pt < pf
R
0 J(p) = p(1 —p)
1 v(p) =1-2p
HD
RI Bl
v(p®) >0 \ v(p®) <0
LD MC g
LI Bl 0 LI % RI 1 pB
+ 0 N
1 1 ;)L Phase Diagram in p®
2
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Steady state selection for multi-component systems The principle
How to apply it?

A principle for multi-component systems

How to generalize the Max-Min principle to multi-component systems?
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Steady state selection for multi-component systems The principle
How to apply it?

A principle for multi-component systems

How to generalize the Max-Min principle to multi-component systems?

Reformulation [Cantini, Zahra, 2023]

Bulk density and current are derived from the solution at zero of the Riemann
problem of the corresponding boundary densities.
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Steady state selection for multi-component systems The principle
How to apply it?

A principle for multi-component systems

How to generalize the Max-Min principle to multi-component systems?

Reformulation [Cantini, Zahra, 2023]

Bulk density and current are derived from the solution at zero of the Riemann
problem of the corresponding boundary densities.

A principle for multi-components systems

Bulk densities and currents are derived from the solution at zero of the
Riemann problem of the corresponding boundary densities.
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Steady state selection for multi-component systems The principle
How to apply it?

How do you put it into practice?

Problem: In general, we don't know what are the boundary densities, for
concrete applications. For lattice models with n species, we can fix the
boundary rates:

. ViLj . . ViRj .

Jj—1i I —=
We can write the left and right current as a function of the left and right
densities

n N
S0 =D o = 0y vy
i=1 i=1

n N
IR =D i —pi > v
i=1 i=1
In the steady state, we have
JH(p") = J(p®) = JR(p") _ _
. R) RPo & Iterative Scheme solution
(P~ p") —>p

Can we speak about a phase diagram?
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Hydrodynamic currents

The Riemann problem

Application: Two-Species TASEP with open boundaries
Phase diagram for Two-TASEP

Vanishing viscosity approach

The two TASEP

Toy model: The two-TASEP

B a 1
ok — * @ *O0 — O * 0 — O@

The hydrodynamic currents are found using the Nested Algebraic Bethe
Ansatz(N-ABA) [Cantini '08]

Jo = za(28 = 1) + po(za — 23)
Jo = 23(1 = za) + pe(2za — 23)

Where the z variables are solution of a saddle-point equation:
o L] 1 - o L] Zﬁ
Boy Po 2P P
Za Zo — 1 Zo — @
Pe Po 1—po—pe
Fe -0
Z3 + zg — 1 + zg — /8

Za € [0, min(1, )] and zg € [0, min(1, B)]

@ 1 Za
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Hydrodynamic currents
The Riemann problem
Application: Two-Species TASEP with open boundaries
The t TASEP =
< two Phase diagram for Two-TASEP
Vanishing viscosity approach

Hyperbolic System of Coupled Conservation Laws

We assume the hydrodynamic hypothesis and we define coarse grained densities
po(x, t) and pe(x,t). We have a System of coupled conservation equations:

atpo + axJo = 0
atp. + axJo = 0

The z’s variables happen to be the Riemann variables that "diagonalize" the
system: [Cantini Zahra '22]

pi Pe lfpo*po ﬁ J. _ J0+J. _
(z& a1 (@ —ap ) aﬂ“*(z& T 12 (za—ap )00

De Do 1— po — pe Jo Jo Jo + Jo
=+ + Ozg+| — + - Oxzg =0
<z§ (z6 — 1) (Za—ﬂ)2> - <ﬁ (z6 — 1) (zﬁ—ﬂ)2> ’

They can be written in a compact form:

0tza + Va(2a,28)0xza =0
0rzg + vg(za,28)0xzs = 0
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Hydrodynamic currents

The Riemann problem

Application: Two-Species TASEP with open boundaries
Phase diagram for Two-TASEP

Vanishing viscosity approach

The two TASEP

The rarefaction fans

Riemann problem: uniform initial profile with a discontinuity at the origin.

5 °of P
p‘;' 1
= . N 5
Special solutions (elementary solutions) 1
best characterised by in the z-plane:
m Rarafaction fans: two types a and 8
+TASEP-like fan L—R
m Shock solutions two types «, and 3 Rt L
1
Rarefaction curves coincide with shock curves: ! l
Temple class model L R
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Hydrodynamic currents
The Riemann problem
Application: Two-Species TASEP with open boundaries
The two TASEP ppiicat! P P!
< two Phase diagram for Two-TASEP

Vanishing viscosity approach

General solutions for the Riemann problem

The arrows allows to navigate in the z space.
Solutions behave according to the relative positions of the points (25, zé) and

(23, 24)

z3 zg
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Hydrodynamic currents

The Riemann problem

Application: Two-Species TASEP with open boundaries
Phase diagram for Two-TASEP

Vanishing viscosity approach

The two TASEP

The General solutions

Combining the elementary solutions, we can "navigate" between any two point
of the z plane.

“B

:u-<—‘;4»:u
:0-4—/
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The two TASEP

Solutions for the density

Hydrodynamic currents
The mann problem
Application: Two-Species TASEP with open boundaries
Phase diagram for Two-TASEP
Vanishing viscosity approach

Some simulations of the integral of the density(h):
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Hydrodynamic currents

The Riemann problem

Application: Two-Species TASEP with open boundaries
The two TASEP FIre Aot e e Arae o

Vit s wHeerhy Cesred -

Application: Two-Species TASEP with open boundaries

Three exchange rates on each boundary:

L LooLoL
v :(Vooayo*ay*o)
R R R R
v :(V007Vo*,y*o)
Problem: Determining the densities on the boundaries and on the bulk from

the rates.
The average currents on the boundaries:

Js = Veops + vau(1— p5 — pt)
Jo = — (Voo + Vio)ps
IS = —vspd = vie(1 = ps — pd)
I8 = (v + v )ps
In the steady state:
JE(ph) = J(p%) = J7(p")

The Scheme
(p*, PF) 2% pf
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Hydrodynamic currents

The Riemann problem

Application: Two-Species TASEP with open boundaries
The two TASEP FIre Aot e e Arae o

Vit s wHeerhy Cesred -

Application: Two-species TASEP with open boundaries

We have 6 equations with 6 variables that we can solve iteratively.

07 10
L 8 R
Po Po Po
06 L 8 R
0.8 P P P
05
06
04
04
03
02 02
01 0.0
0 200 400 600 800 1000
Iterations
07 10
L 8 R
Po Po Po
06 L 5 R
08 pe P A
05
06
04
04
03
02 02 —
01 0.0
0 20 40 60 80 100 0 200 400 600 800 1000
Iterations
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Hydrodynamic currents

The Riemann problem

Application: Two-Species TASEP with open boundaries
The two TASEP o B ¥

Phase diagram for Two-TASEP

Vanishing viscosity approach

Boundary-induced phase diagram for Two-Species TASEP

The phase diagram is conveniently parameterized by the Riemann variables in
the bulk:

B B
m For single-species TASEP: v(p®) >0 v(p®) <0

o L R 1 8

~

N|=

m For two-species TASEP:

Zp

Vg =

_— U=

Zy Zg
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Hydrodynamic currents

The Riemann problem

Application: Two-Species TASEP with open boundaries
Phase diagram for Two-TASEP

Vanishing viscosity approach

The two TASEP

Phase diagram

Hyperbolicity of the conservation laws implies that some Forbidden Phases

| Va <0 va=0]va>0

vg <0 RR BR LR
vg =0 X BB LB
vg >0 X X LL

Numerical simulations varying v/5, For the green shaded region vs > 0, while
for the yellow shaded section vz = 0. v, < 0 for both regions

08 L B R 08 L B R
I e A ol — &
’ ot — 8 — pf ’ 25— 2§ == Zf
06 06
X X
05 05
0.4 04
03 03
02 02 X X = e = X = ]
e
01 o1
- - X e = B = e = ) — X = =3 = X = ]
.-
0.0 0.0
01 02 03 0.4 05 06 01 02 03 04 05 06
vty W,




Hydrodynamic currents

The Riemann problem

Application: Two-Species TASEP with open boundaries
Phase diagram for Two-TASEP

Vanishing viscosity approach

The two TASEP

Vanishing viscosity approach

We add an infinitesimal diffusion component to the current:

total __ _ @
I = J(p) —eD(p) 5

We can derive an ODE for the Riemann variables

0z _ —1lp4-1p/-1 totaly .__
€ M™"D " (J(z) — J°*) == F(2)
Where Mj; = g'gf. Obviously: F(z®) = 0 We linearize the ODE in the
J
neighborhood of the stationary point:

OF;
9]
So the phase diagram is again governed by the set {v;}:
m A Sink v; < 0 for all i, this means that the bulk is driven from right
A Source v; > 0 for all i,this means that the bulk is driven from left.
A Saddle Point v; # 0 but have different signs. each z will be driven
according to the sign of the corresponding v;
m Second Order Singularity if some v; are zero. The bulk will belong to the
intersection of the manifolds v; = 0

(&%) =M d iy
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Hydrodynamic currents
The Riemann problem
Application: Two-Species TASEP with open boundaries
The two TASEP
< two Phase diagram for Two-TASEP

Vanishing viscosity approach

Vanishing viscosity approach

Illustration for 2-TASEP for « = 0.8,8 = 0.9
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The Two-ASEP
The Three-TASEP
Application to other models

Two-ASEP

1 0f i>j
g if i<y
where we have chosen the following order on the species: e > % > o.
Jo = (1= q)pe(1 — po)
Jo = (g —1)po(1 — po).

Vij =

0.9
. . . . L ogd — P5 — P2 - A
m Numerical simulations varying v,,. - T
0.74
m For the green shaded region v > 0 I I
m For the yellow shaded section 05| g
Ve <0 041
m For both regions v, < 0 SRS, .
0.2 o » § N
011
0.0
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The Two-ASEP
The Three-TASEP

Application to other models

Three-TASEP

The last model we have considered, a 3-species TASEP, contains particles with
labels (1,2,3,4), where the type 4 can be seen as empty sites, and bulk
hopping rates:

0 if i>j
vi .. if ij)=(1,2
T
vaa if  (i,j) = (3,4)
1 otherwise
:: — o o5 of
S =Jo(1 = p1— p2,p1,1,v12) o] T et —
Jo = Jo(pa, p1 + p2,v34,1) — S °
Ja = Jo(pa, p1 + p2,v34,1). os
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Investigating how rigorous the method is

Relation to integrable boundaries
Testing on more models with number of species n > 2

Models which are not Temple class?

Models that do not have convex currents
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